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Abstract 

In order to clarify physical consequences due to the presence of a set of auxiliary functions 
$k(q, t) in quantum mechanics with a non-negative phase-space distribution function, 
the simplest quantum-mechanical problems are solved. It is shown that ~k(q, t) influence 
upon the results of a problem. Therefore it is supposed that ~k(q, t) reflect some physical 
reality (subquantum situation), interacting with a mechanical system. In particular the 
'subquantum situation' determines the minimum coordinate and momentum uncer- 
tainties ((~q)2 and (~p)2) as well as the coordinate distribution of a 'fixed' system and 
the momentum distribution of a 'free' system. These results provide the opportunity to 
formulate the notion of a stationary homogeneous isotropic 'subquantum situation'. 
Supposing that ~q and Op are small an attempt is made to develop an approximate method 
of solutions (quasi-orthodox approximation). Energy spectrum of an electron in a 
hydrogen atom is found in the second order of this approximation. 

1. Introduction 

A m o n g  the discussed aspects o f  the modern  quan tum theory the so-called 
' incompleteness o f  the probabil i ty interpretation'  occupies one o f  the most  
impor tant  places. One can explain this not ion in an elementary fashion as 
follows. 

I t  is well known that  quan tum mechanics is a statistical theory which 
deals with probabilities. Thus for any instant t quan tum mechanics gives a 
probabil i ty coordinate density ~ ( q , t ) ~  0 and a probabil i ty momen tum 
density fl(p, t) i> 0 correlated by the wave function ~ (or by the density 
matrix p). Let  us suppose now that  one o f  these physical variables, for 
example q, will be measured at an instant t ' .  The value q( t ' )  will naturally 
appear  to be equal to q ' ,  one o f  the coordinate values allowed by the 
distribution c~(q, t'). Then any consistent probabilistic theory must  give a 
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conditional probability of momentum, i.e. a probability momentum 
density ~'(p/q(t')=q') under the condition that the value q' of the 
coordinate is realised at the instant t'. However conditional probabilities 
do not enter into modern quantum mechanics, furthermore one is forbidden 
to think about such probabilities. 

This inconsistency of quantum mechanics (from the point of view of 
probability theory) leads to a number of important consequences. For 
example, (1) it is not permitted to suppose that at a certain instant a quantum 
system can be found at a point {q,p} in phase-space, (2) any attempt of 
model ideas about quantum systems is rejected, (3) the possibility of 
creating a theory giving a more complete description of the evolution of 
quantum mechanical systems seems to be doubtful, etc. These consequences 
have been the subject of continuous discussions during more than 40 years. 

The interdictions mentioned above would apparently have been removed 
and many of the discussed problems would have been automatically 
resolved if quantum mechanics gave a phase-space probability density 
F(q,p, t) >>. 0 satisfying the usual conditions: 

f F(q,p,t)dp=c~(q,t), f F(q,p,t)dq=~(p,t) (1.1) 

However the repeated attempts to introduce such a function in quantum 
mechanics turned out to be unsuccessful (Wigner, 1932; Terletsky, 1937; 
Blokhintsev, 1940; Margenau & Hill, 1961; Mehta, 1964; Cohen, 1966a; 
Shankara, 1967; Kuryshkin, 1968, 1969a). The quantum distribution 
functions F(q,p,t) constructed by different authors appeared to be either 
real with a variable sign, or complex. The only non-negative F (Bopp, 1956) 
leads to a divergence with experimental data. 

Finally it was proved that it was impossible to introduce a non-negative 
phase-space distribution function in modern quantum mechanics (Cohen, 
1966b; Kuryshkin, 1969b). But it follows from this proof that it is possible 
to create a new quantum mechanics possessing the mentioned function. 
Such a theory was proposed by the author of this paper (Kuryshkin, 
1969b, 1969c, 1971). 

The preliminary investigations (Kuryshkin, 1969b, 1972a) show that the 
obtained theory is closed and self-consistent. Besides it contains the classical 
statistics and the essential part of the generally accepted quantum 
mechanics as particular limiting cases. 

However the mathematical formalism of such a quantum mechanics 
includes a set of auxiliary functions of coordinate and time of which the 
meaning is not yet clear. These circumstances deprive us of the possibility 
of verifying the theory by the precise solution of concrete problems and the 
performance of the corresponding experiments. 

That is why in the present paper we intend first to investigate the physical 
consequences due to the presence of auxiliary functions and second, to 
formulate more or less consistent approximate methods for the solution 
of concrete problems. 



PROBLEMS OF QUANTUM MECHANICS 453 

2. Formulation of a Problem Within the Quantum Mechanics Possessing a 
Non-Negative Phase-Space Distribution Function 

Let a mechanical system be characterised (from the point of  view of the 
classical theory) by a number of  physical variables A(q,p,t) given as 
functions of  phase-space {q (q~, q2 .. . .  , qN), P(Pl,P2,...,PN)} and time t. 

To formulate the corresponding quantum problem we shall choose some 
set of  square integrable functions of the coordinates and time ~bk(q, t), 
k = 1, 2, 3 . . . .  , normalised as follows: 

I ~ [~bk(q, t)[2dq = 1 (2.1) 
J /r 

Constructing the auxiliary function of  phase-space and time 

~(q,p, t) = (2nh) -mz exp -~(qp) ~ ~k(q, t) ~ok*(p, t), (2.2) 

where (qp) is the scalar product of the vectors q and p, 

i ~k(p, t) = (2zth)-N/2 f dpk(q, t)exp (-~(qp)) dq, (2.3) 

we shall define the action of  the operator O(A) corresponding to the 
function A(q,p, t) on an arbitrary function U(q, t) of coordinate and time 
by the equality 

O(A) U(q, t) = 
/ 

(2rch)-N f q~(~, t/, t)A(q+ ~,p+rl, t )exp~((q-q')p)~ U(q', t)d~ dt 1 dp dq' 
\ 1  

(2.4) 
The definition (2.4) represents a correspondence rule between the 

classical functions A(q,p,t) and their quantum operators O(A). The 
properties of the operators thus obtained have been studied in the papers 
(Kuryshkin, 1971, 1972a). 

Having determined all the operators O(A) we may use the conventional 
mathematical formalism of quantum mechanics: (1) the state of  the system 
can be given by any normalised wave function ~(q, t) satisfying the equation 

ih O~(q, t) at - O(H) ~(q, t) (2.5) 

(2) the expectation value (A) of  a physical variable A in the state ~k is 
determined by the formula 

(A) = f $*(q, t) O(A) •(q, t) dq (2.6) 

Here O(H) and O(A) are the operators corresponding to the Hamilton 
function H(q,p, t) of the system and the physical variable A(q,p, t) due to 
the correspondence rule (2.4). 
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With the help of  the relations (2.2-2.4) we easily obtain from (2.6) 

(A) = f A(q,p, t)F(q,p, t ) dq dp, (2.7) 

where the phase-space distribution function Fis  related to the wave function 
by the formula 

( , ):  F(q,p,t)=(2zch)-N ~ Ck(q--~, t)lp*(4, t)exp -~(4P) d4 (2.8a) 

The properties of  the distribution function (2.8a) and its equation (Kurysh- 
kin, 1969b, 1972a) permit us to treat F as the phase-space probability 
density, i.e. to give the probabilistic interpretation to the proposed theory 
(Kuryshkin, 1972a). 

Integrating (2.8a) we  obtain the relations analogous to (1.1) 

e(q,t) = f 10(4, t)l ~ ~ [r - 4, t)12d4 (2.88) 

i 2 (2 h)-N/2fO(q,t)exp(- (qn))dq  lqS (p-n,t)12dn (2.8c) 

which give us the probability densities of the coordinates and momenta 
(Kuryshkin, 1972a). 

If  cg(q', t ') r 0 then the value q' of  the coordinate can be realized at the 
instant t'. In this case we have 

1 
f l ' (p /q( t ' )  = q')  = c~(q', t ' )  F ( q ' , p ,  t )  (2.9) 

i.e. the proposed quantum mechanics is free from the 'incompleteness 
of  the probability interpretation'. 

The formulas (2.5, 2.6, 2.8, 2.9) can be easily generalised on mixture of  
states given by a density matrix p (Kuryshkin, 1971, 1972a). 

3. The Simplest Quantum-Meehanieal Problems 

In the preceding paragraph we have stated the mathematical formalism 
of quantum mechanics with a phase-space probability density. Nevertheless 
we are unable to apply this formalism to concrete quantum problems since 
we do not know the explicit form of the auxiliary functions. This is natural 
since the appearance of Ck(q, t) in the theory is not connected with any 
physical reason but with certain mathematical demands (Kuryshkin, 1971). 

To clarify the physical consequences due to the auxiliary functions we 
shall consider some problems permitting the exact solution with an arbitrary 
set of  Ck(q, t). 

First of  all we shall notice that our operators O(A) corresponding to the 
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functions A(q,p, t) which are integral and rational with respect to p, take 
the differential form: 

f r rl, t) a(q + 4, fi + rl, t) d~ dt 1 (3.1) O(A) 
where 

a 
fi~ = -ih-=--, j = 1, 2 . . . . .  N. (3.2) 

Oq~ 

The function A in (3.1) must be written down so that/~j do not operate 
on A. Introducing the notation 

A(q,p, t)e" = f A(q,p, t) ~(q,p, t)dqdp (3.3) 

which will be useful in the future if we obtain from (3.1) the coordinate and 
momentum operators: 

O(q) = q + qe', O(p) =fi + fie, (3.4) 

Let us start now with the treatment of the simplest quantum-mechanical 
problems. 

1. A free system with Hamiltonian 
N 

g(q ,p ,  t) = p~ (3.5) 
j = l  

Taking into account the relations (2.1), (3.3) and (3.4) we have from (3.1) 
the total energy operator 

n 1 2 -2e' 
O(H) = ~ ~mj(O (p j) + pj - (pie') 2) (3.6) 

The eigenfunctions of this operator are 

i 
~1, = L~N/2 exp (-h (qP)) , (3.7) 

with the eigenvalues 
N 

Ep = {Pj + 2pjoPj +p~e'} >/0 (3.8) 
j=:t 

where P = P(P1,P2,...,PN) and the coefficient 

La N = f dq = (2nh) N 3p(0) 

is introduced to have the formal normalisation of 1512 to unity. 
Having determined the operators corresponding to the integral and 

rational functions of momentum we obtain according to (2.6) 

Ij  nj--I l c P J J Pj = ~ "'" ~ ,j j F [P j  (3.9) 
p /j=0 IN=O \ j= 1 / 
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Cff being the binomial coefficients. Hence it follows in particular 

(Pj )e  --- P~ § Pj~, (pje)e = p j2 + 2p j* Pj  + /~*  (3.10) 

which jointly with (3.8) gives the usual relation between ( E )  and (p  j2). 
Finally combining (2.8) and (2.6) we arrive at the normalised probability 

density 
Fe(q,p, t ) = L Z N ~  [~k(P -- P, 012 (3.11a) 

k 
~j,(q, t) = L~ -u (3.1 lb) 

/~(p, t) = E [ q~(p - P ,  012 (3.1 lc) 
k 

Hence when the state of  a free system is an eigenfunction of  the energy 
operator, the momentum not precisely determined but distributed with 
the probability density (3.11c). One can easily verify that the statistical 
average of  momentum functions over the distribution (3.11c) coincides 
with the results (3.9). 

By constructing the operators O(H") and calculating (E")e one can find 
the energy distribution and show that the energy is not precisely determined. 

2. The minimum uncertainty of  momentum. Having constructed the 
operator O((Apj) 2) where Apj = p j -  (p  j)  and calculated its expectation 
value in an arbitrary state ff after a simple transformation we shall have 

((Apj) z) = ((O(pj) - (pj))z)  + [p~o _ (p j6)2] t> 0 

Both terms on the right-hand side of this expression are non-negative. 
Hence with any set of  the auxiliary functions (ok(q,t) the minimum un- 
certainty of momentum 

min (((Apj)2)} - - - /~  - ( p j o ) 2  d_ef (6p j)2 ~> 0 (3.12) 
V 

is attained when the wave function satisfies the equation 

O(p)~ = (p )  r (3.13) 

Thus independently of the number and the explicit form of ~bk the momen- 
tum is mostly determined in the p-states (there is some difference here 
between the p- and the/~-states since generally O(p) # p). 

3. The p-states. Since the functions (3.7) are eigenfunctions of  the 
operator O(p) with the eigenvalues ( p ) - - P + p O  the equation (3.13) 
leads to results completely coinciding with the formulas (3.9-3.11). Thus 
(3.11c) is the momentum distribution in the states where the momentum 
is mostly determined. 

4. The q-states. The equation 
O(q) tp = ( q )  ~p (3.14) 

gives us the normalised eigenfunctions 

~9o(q ) = L;N/2(27rh)-m2 6(q - Q) (3.15) 

with the eigenvalues (q)o = Q + q~', Q = Q(Q1, Q2,.. ., QN). 
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In this case the expectation values of coordinate functions are given by 
formulas analogous to (3.9) and (3.10) (one has to substitutep -+ q, P -~ Q) 
and the normalised probability densities have the forms 

Fo(q, p, t ) = L ~  N ~. ](9k(q- Q, t)] z (3.16a) 
k 

~e(q, t) = ~ ]~bk(q - Q, t)[ 2 (3.16b) 
k 

fie(P, t) = L; "N (3.16c) 

5. The minimum uncertainty of  the coordinate. Having constructed the 
operator O((Aqj)2), Aqj = qj - (q j), we find that the minimum coordinate 
uncertainty 

min {((A q j)2)} = ~24, _ (~j4,)2 d___ef (O q j)2 >1 0 (3.17) 
W 

is attained in the states ~b satisfying the equation (3.14). Hence with any 
set of (~k(q,t) the coordinate is mostly determined in the q-states. The 
expression (3.16b) gives us the probability density of coordinate in such 
states. 

Thus the quantum mechanics with a non-negative phase-space distribu- 
tion function generally leads to 'fluctuations' of the energy, momentum 
and coordinate in the E-, p- and q-states while the expectation values, 
dispersions and the corresponding distributions are functionals of the 
auxiliary functions. 

4. The Notion of  a 'Subquantum Situation' 

The results of the preceding paragraph might be easily comprehended if 
one supposes that the auxiliary functions Ok(q, t) reflect some unknown 
(or perhaps already partially known) physical reality. 

Later on following the accepted terminology (Kuryshkin, 1972b) we 
shall say that the functions ~bk(q, t) represent some 'subquantum situation' 
in which the considered system is placed. By introducing this special term 
we separate the physical reality reflected in our theory by the auxiliary 
functions from the mechanical system placed in this reality (and interacting 
with it). In other words the 'subquantum situation' can exist apart from any 
mechanical system. On the other hand different systems can be placed in 
the same 'subquantum situation'. 

We do not principally use the presently well-known term 'hidden para- 
meters'. In fact from the point of view of our theory the considered mechani- 
cal systems possess classical (and only classical) parameters. But its 
behaviour is non-classical (quantum). This might be explained by some 
hidden properties of the system itself as well as by its interaction with the 
'subquantum situation'. Naturally this interaction might be carried out by 
means of some 'hidden parameters' inherent in the system as well as in the 
'subquantum situation'. 
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The classical characteristics of the mechanical system (i.e. the totality 
of the functions A(q,p, t)) and the 'subquantum situation' (the set ofCk(q, t)) 
completely determine the operators and consequently the solutions of the 
considered quantum-mechanical problem. The treatment of the same 
system in another 'subquantum situation' will lead to other solutions. 
This is natural since the 'subquantum situation' interacts with the system 
which is placed in it. In accordance with the results obtained above the 
'subquantum situation' determines the momentum distribution (3.11c) of 
a 'free' system, the coordinate distribution (3.16b) of a 'fixed' system as 
well as the minimum coordinate (3.17) and momentum (3.12) dispersions. 
It is quite clear that the 'subquantum situation' will also give a contribution 
when the states of a system differ from those examined above (see for 
example the harmonical occilator (Kuryshkin, 1972)). 

The coordinate and time dependence of Ck allows to make a number of 
suppositions about the physical nature of the 'subquantum situation' such 
as: the physical properties of space-time, physical 'vacuum', physical 
environment (the apparatus for example) and so on. These suppositions 
are not new. Some of them are already worked out rather well and apparently 
are similar in their physical meaning to our 'subquantum situation', for 
example the 'subquantum medium' (De Broglie, 1964, 1968; Bohm & 
Vigier, 1954; Terletsky, 1960). 

In this paper we are not going to discuss the possible physical inter- 
pretations of the 'subquantum situations' since first of all we have to 
clarify the following: 

1. Whether results of the proposed theory correspond to the known 
experimental data, and 

2. If they do, is it possible to verify the existence of the 'subquanturn 
situation' experimentally ? 

These questions are not easy to answer. As a rule the problems resolved 
with an arbitrary 'subquantum situation' do not permit to perform an 
experimental test while we are unable to resolve a problem tested by 
experiment in the most general case. Thus there appears the necessity to 
restrict the totality of the 'subquantum situations'. In other words one has 
to formulate some other (in addition to (2)) mathematical requirements on 
Ck (some physical proposals about the 'subquantum situation') in order 
to simplify the solutions of concrete problems without loss of generality of 
their formulations. 

5. Stationary Homogeneous Isotropie 'Subquantum Situation' 

To simplify the concrete problem solutions we shall require the 'sub- 
quantum situation' to be stationary in time, homogeneous and isotropic 
in the 3-dimensional space. 

It is necessary to give a detailed explanation of this requirement. We 
suppose that the interaction of the 'subquantum situation' with a system 
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placed in it does not depend on the instant, orientation and region of 
location of the system in 3-dimensional space. 

At first sight it seems that we have identified the 'subquantum situation' 
with something like an ether uniform over the universe. But this is not true. 
Since our theory is probabilistic there always exists a region in which the 
probability of the system stay is close to unity. We suppose that the 'sub, 
quantum situation' is the same at any point of this region. It is quite possible 
that the 'subquantum situation' in other regions is essentially different. 
However it is unimportant since the probability that the system hits such a 
region is nearly zero. This fact allows us to spread the 'subquantum situ- 
ation' from the region of the system stay to the whole universe. As far as 
the stationarity is concerned our supposition means that in the region of 
the system stay the 'subquantum situation' does not change during the 
period of observation. Its change in this region during another period of 
time and in other regions of the space in this period is not essential for the 
investigated problem. 

From a mathematical point of view one can write down the requirement 
of the stationarity, homogeneity and isotropy of the 'subquantum situation' 
as follows: 

Ck(r, t) = Ck(r), k = 1,2, . . .  (5.1) 

where r = r(x,y,z) is a point of the three-dimensional space, r = Irl. 
The stationarity of the 'subquantum situation' (5.1) is obvious. We shall 

show now that it is also homogeneous and isotropic. 
Let the coordinate q of a system be mostly determined. Then (see the 

results of Section 3) the expectation value <q> can be arbitrary and the 
coordinate probability density in accordance with (3.16b) is: 

a(q,t) = ~ [r - <q> +46,  t)[ z (5.2) 
k 

Let the system consist of a single particle. Then in the 'subquantum 
situation' (5.1) ~ = 0 and it follows from (5.2) 

~(<r> + r t) = ~ Ir162 2 (5.3) 
k 

where r = r - <r>. Thus in the 'subquantum situation' (5.1) the probability 
of finding the particle at a distance r from its expectation coordinate <r> 
depends neither on time (stationary), nor on the coordinate <r> of the 
particle (homogeneity) but on the modulus of the deviation r (isotropy), 

The treatment of a free particle in the 'subquantum situation' (5.1) leads 
to analogous results. In fact combining (2.3) and (5.1) we have 

co 

r ,) 2 frCk(r)sinr_ffffdr=~k(p) (5.4) 
p 

0 

where P=P(Px,Py,P~) is a 3-dimensional momentum, p = ]p[. Together 
with (3.10) and (3.1 lb) this gives us 

#(<p> t) = Z 2 (5.5) 
k 
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i.e. the probability of a 'subquantum' addition ~ to the momentum p 
depends neither on time nor on the momentum of the particle. These 
results indicate once more the space homogeneity and isotropy of the 
'subquantum situation' (5.1). 

Now we have to decide what is the 'subquantum situation' Ck(q, t) in a 
configurational space q=q(rl,r2,...,rn) , which arrives when a system 
consists of n objects. Since all of these objects are in the same three- 
dimensional space, i.e. each object is placed into the same 'subquantum 
situation' Ck(r), Ck(q,t) consists of Ck(r0; i =  1, 2 .... , n. The functions 
Ck(q, t) must be symmetric with respect to all permutations of rf, since the 
interaction between the isotropic 'subquantum situation' and a system 
does not depend on the orientation of the latter. Besides one has to keep 
the formalization (2.1). It is therefore natural to write down 

~bk(r,, r2 . . . .  ,rn) = {f [dpk(r)[2dr}(n-*/z)(ok(r,)...d)k(rn) (5.6) 

It follows from (5.6) that the 'subquantum situation' leads to some 
dependence (correlation) of classically independent systems which is 
natural. We shall not prove or discuss this important consequence in the 
present paper. We shall only mention that in our theory one must be very 
careful in dividing a system into several classically independent parts. 

It is interesting to notice that correlations of the classically independent 
systems sometimes take place also in the generally accepted quantum 
mechanics (Einstein et aL, 1933). 

6. Approximate Methods 
The quantum mechanics with a non-negative phase-space distribution 

function has two types of mathematical formalism (Kuryshkin, 1972a). 
But at the present time the operational formalism seems to be preferable. 
Firstly, the equation for ~ is more simple then that for F, in spite of the 
fact that both of them are integro-differential. Secondly, the solution of 
problems in the operational formalism provides the opportunity to use the 
rich mathematical apparatus of the generally accepted quantum mechanics. 
Thirdly, the operator O(A) of an integral and rational (with respect to 
momentum) function A(q,p,t) can be written down in the differential 
form. 

We shall rewrite here the definition (3.1) in the equivalent form: 

O(A(q,p,t))={f r t)A(q+~,p+rl, t)d~dq}p=p (6.1) 

where the curly brackets mean the regulation of the function with respect 
to momentum, i.e. the placement ofpj after the coordinate functions before 
the substituting p~ by/~j. 

For the following calculations one has to choose the explicit form of 
Ck(q, t). However it is possible to consider some successive approximations 
based on the following reasonings. 
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In our theory the momentum and coordinate dispersions have inferior 
limits in any state: 

<(Aqj) z) >1 (6qj) 2, ((Apj) 2) >/(6pj) 2 (6.2) 

where (6qj) 2 and ( 6 p y  are the 'subquantum' uncertainties. In the case of 
stationary homogeneous isotropic 'subquantum situation' (5.6) they do 
not depend on the component number: 

fiq,--J(fq,2~Id~k(q)J2dq)=fi q (6.3) 

6pj=J(fpjZ~l~k(p)12dp)=6p (6.4) 

which follows from the relations (2.2), (3.12), (3.17), (5.4) and (5.6). 
The limitations (6.2) permit us to make the three following suppositions 

about the 'subquantum situation'. 

1. 6q is small. Then it follows from (6.3) that all qIk(q) (and also ~b(q,q)) 
differ essentially from zero only for q ~ 0. Hence we can use in (6.1) the 
Taylor series development of A and write down the operator of accordinate 
function in the form of successive approximations 

where 

O(V(q, t)) = f e (eaq) (a(~, r) d~ dr V(q, t) 

= f {1 + (!vo) + �89 2 +...} ~(~, r) d~ dr V(q, t) (6.5) 

[ 0 , 0 ,  

2. @ is small. An analogous reasoning with the help of (3), (6.1) and 
(6.4) give the successive operators corresponding to a momentum functions 

O(g(p, t)) = {f e ("v,' (a(~, r) d~ dr g(p, t)},=0 (6.6) 

3. 6q andbp are small. Then both of the series (6.5) and (6.6) are correct 
and furthermore 

t)) = {f exp (~Vq) + (t/Vp) q~(~, r) d~ dr A(q,p, t))p=0 (6.7) O(A(q,p, 

In the case for functions of the form f (q )+ g(p) in the zero-order 
approximation we have the orthodox operators 

O(g(p, t) + f ( q ,  t)) = g(fi, t) + f(q, t) 
Therefore later on we shall use the term 'quasi-orthodox approximation' 
for the approximate method based on the third supposition about the 
'subquantum situation'. 

We shall notice one difficulty in the series (6.7). To determine the order 
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of  the smallness of a term in these series is not easy. First, the orders of  
smallness of 6q and 6p can be different. Second, the correlative terms of 
the type (~q)n can be rather large. However this situation will be simplified 
by the fact that for the concrete operators the series (40) will be finite 
because the orders o fp  in the real physical variables are not large. 

At last we shall explain how the expressions '6q is small' and '6p is small' 
are understood. The quantities 6q and 6p are denominate and their absolute 
values depend on the choice of the system of units. Therefore by saying 
for example '6q is small' we mean that 

6q ~ Aq = min{Aqj} (6.8) 
J 

where 
A qj = V'(((A q~)2)), j = l, 2 . . . .  , N 

In other words the 'subquantum' coordinate uncertainty 6q is much 
less than the coordinate uncertainty Aq of the system placed in this 'sub- 
quantum situation'. Hence it is possible to justify the correctness of a 
chosen approximate method only after having resolved the problem (for 
the calculation of Aqj one must already know the state ~). If  for example 
~Sq _ 10 -11 cm and as a result one has Aq ~_ 10 -s cm then the supposition 
about the smallness of 6q might be considered justified. But if Aq turns out 
to be less than 10 -11 cm the quasi-orthodox approximation is doubtful 
and one has to resolve the problem beginning with the redetermination of 
operators. In this case one must naturally know the character of the 
'subquantum situation', i.e. the explicit from of all q~k(r). 

7. Energy Spectrum of an Electron in the Coulomb Potential. The Second 
Order of the Quasi-Orthodox Approximation 

Let a particle of  a mass # be in the potential field V(r), Then the main 
variables characterising this particle are the following: coordinate r, 
momentum p, moment L =  [r • p], kinetic energy T=p2/21 ~, potential 
energy V = V(r), total energy E = T + V. 

In a stationary homogeneous isotropic 'subquantum situation' (5.1) 
we have from (6.5-6.7) the following operators: 

O(r) = r, O(p) = -ihV, O(L) = -ih[r • V]/ 
O(r2 ) r2 + 3(6r)2 ' O(p2 ) = _ h z v  2 + 3(~p)2 j (7.1) 

h2 2 3 2 
O(T) = - ~ p V  + ~ ( 6 p )  (7.2) 

O(V) = V(r) + �89 2 V(r) + . . .  (7.3) 

where 6r and 6p are the 'subquantum' uncertainties of the coordinate and 
momentum. The operators (7.1-7.2) are exact, the operator (7.3) is given 
in the second order with respect to 6r. The operator O(E) is the sum of 
(7.2) and (7.3). 
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Let the considered particle be an electron (charge -e)  in the Coulomb 
field (a charge +Ze placed in the point r = 0). Then 

Z e  2 
V(r) = - - - ,  V 2 V(r) = 4nZe 2 3(r). (7.4) 

r 

Combining (7.2), (7.3) and (7.4) we have the total energy operator in 
the second order of the quasi-orthodox approximation: 

h 2 3(3p) 2 O(E) = - - -  V 2 Ze2 + + 27rZe2(3r) 2 3(r) (7.5) 
2# - - -~-  

It is now natural to treat the problem in accordance with perturbation 
theory by considering the last term in (7.5) as the perturbation operator. 
For the non-perturbed equation 

_h2 V2 Ze2+~(3p)2}~(r)=E~O)~(r)  
2# r 

we obtain the eigenfunctions lp,zm(r ) coinciding with those of the corre- 
sponding problem in the generally accepted quantum mechanics (Fermi, 
1961) and the spectrum of eigenvalues 

Z 2 e 2 3 2 
E~ ~ 2an~ + ~ (3p) 

where 

n =  1,2,. . . ;  I=0 ,1  . . . . .  n - l ;  m = - l , . . . , 0  . . . . .  /, 

a = h2/#e 2 

The eigenvalue E~ ~ is n2-fold degenerate but the matrix of the perturba- 
tion operator is diagonal since 

Z 3 
(nlm[3(r)Jnlm) -~ ~ 3,o 

Therefore the secular equation for the nth eigenvalue gives only one (the 
degeneracy is not completely removed) but totally determined correction, 
i.e. the only eigenvalue which increases corresponds to the eigenfunction 
~,0o. Finally we have: 

Z 2 e 2 3 2 2 Z 4  e2(3r )  2 - 
E,, =-.2an2 + ~[# (3p) + ~ 6~o (7.6) 

The first term in (7.6) represents the energy levels coinciding with those 
obtained in the generally accepted quantum mechanics. The second term 
giving a positive addition to the energy, does not influence the difference 
between the levels. Hence it cannot be experimentally verified. The third 
term indicates a shift of the S-levels which must lead to a splitting of the 
spectral lines. 
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Such a shift is observed experimentally (Lamb & Retherford, 1947) and 
has been qualitatively explained in the quantum electrodynamics (Bethe, 
1947). In accordance with experiment the relative shift of  2S1/z and 2P1/2 
energy levels of  electron in a hydrogen atom is approximately 9 ~ (0.033 
cm -1) of  the fine structure, i.e. : 

AE ~_ 0"09 ~2 c 2 (7.7) 
32a 

where ~ = e2/hc is the fine structure constant. 
Comparing (7.7) with our result when z = 1, n = 2 we get an estimation 

of  the 'subquantum' coordinate uncertainty 

6r --- 0"1 l~a __ 4.1.10 -lz cm (7.8) 

In order to evaluate the 'subquantum' momentum uncertainty we shall 
suppose that E.  < 0 for the experimentally observed states. Then (7.6) 
gives us the relation between 6p and the maximum level number nm.x : 

"V/3nmax 6p < ~Zpc (7.9) 

Since for the hydrogen atom (Z = 1) n,n~x is not less than 30 we obtain 
from (7.9) 

6p < 0.02~/tc _ 3.9.10 -21 g cm/sec (7.10) 

To justify the quasi-orthodox approximation we shall calculate the 
coordinate and momentum dispersion in the Gz,,-state: 

n 2 a 2 
<(Ar)2> = 2--Z-g [5n  2 q- l - 31(l q- 1)] 

<(Zp)Z> = P Zze2 ~_ 3(@) 2 
a n  2 

Considering ((Ar)Z> = 3(Ar) 2, ((Ap)2> = 3(Ap) 2 and using (7.8-7.9) we 
obtain 

6r Z z __6P = [1 n2m~x\-l/2 
- -  ~< ~176176 i + -n T )  Ar Ap 

Hence one can consider the 6q-approximation to be justified. The 6p- 
approximation is good only for small n. We must point out that the 61)- 
approximation was not explicitly used in the above calculations. 

8. Conclusions 

In spite of  the rather hopeful results of the preceding paragraph we are 
still far from the statement that quantum mechanics with a non-negative 
phase-space distribution function is adequate. In fact we have not yet 
answered the main questions posed in the fourth paragraph. 
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The only new result tested by experiment (the energy shift of the S-states) 
cannot be treated as a proof of the correctness of the proposed theory, 
since the same result can be obtained in different ways (Bethe, 1947; 
Welton, 1948). 

On the other hand the proposed quantum mechanics gives rise to a 
number of interpretational and mathematical difficulties. The first consists 
of the fact that such a quantum mechanics demands a new interpretation 
and consequently a reconsideration of modern views on the quantum 
theory. But for the present we do not consider this problem to be the most 
important. First of all we must find out whether this theory leads to correct 
results. Here appears the main difficulty, which is of mathematical nature. 

The solution of the first problem verified by experiment shows that the 
variable 6qfp which one can consider as a sort of action of the 'subquantum 
situation' is very small. That follows from the relations (7.8) and (7.10): 

6r.fp < 0.0022ah ~ 1.6.10-sh (8.1) 

(remember the three basic suppositions made in the preceding paragraph: 
the third term in (7.6) represents the Lamb shift, only 30 energy levels of 
the electron exist in the hydrogen atom, the energy of this level is negative). 

It is possible to show that the result (8.1) is not accessible while the 
functions ~bk(q) are analytic. But the inequality (8.1) can be easily satisfied 
choosing a set of non-analytic singular functions for which I~bk(q)i z is a 
generalised function (Kuryshkin, 1969). The mathematical theory of such 
functions is not yet sufficiently developed. Hence we are unable to perform 
the differentiation and the integration by parts which are necessary for 
more complicated calculations. 

Thus at the present stage of development the quantum mechanics with 
a non-negative phase-space distribution function is not more than a 
formalism which needs a profound mathematical investigation. 
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